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Summary.

A computational model of human self-motion perception has been developed in

collaboration with Dr. Leland S. Stone at NASA Ames Research Center. The

research included in the grant proposal sought to extend the utility of this model so

that it could be used for explaining and predicting human performance in a greater

variety of aerospace applications. This extension has been achieved along with

physiological validation of the basic operation of the model.

Update of progress since Final Semi-Annual Report (5/31/95).

Manuscript completed and submitted which reports the results of a large number

of simulations of the model against existing physiological data from area MST of

primate visual cortex (see Appendix 1).

Two-dimensional motion sensors were developed with properties similar to those

found in area MT (Middle Temporal) of visual cortex. These sensors enable

digitized video image sequences to be used at input to our self-motion model

instead of theoretical velocity vector fields. It therefore greatly expands the scope

and validity of the model (see Appendix 2)..

The development of a realistic two-dimensional sensor lead to a mechanism for

incorporating eye-velocity information at the level of the MT units in our model.

This is still being developed in conjunction with the image-based implementation

of the self-motion model.

• The potential for incorporating higher level information (acceleration)

has been demonstrated.

Publications/Conferences:

Perrone JA (1994) Simulating the speed and direction tuning of MT neurons using
spatiotemporal tuned Vl-neuron inputs. Invest Ophthal Vis Sci Suppl 35:2158.

Stone LS, Perrone JA (1994) A role for MST neurons in heading estimation. Soc. for
Neurosci. Abstracts 20:772.

Perrone JA (1996) Generating acceleration sensitive motion sensors from sets of
spatio-temporal filters. Invest Ophthal Vis Sci Suppl 37:$750

Stone LS, Perrone JA (1997) Human heading estimation during visually simulated
curvilinear motion. Vision Res 37-573-590.
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324.4 A ROLE FOR MST NEURONS IN HEADING ESTIMATION
L.S. Stone1 and J.A. Perrone2

1Life Science Division, NASA Ames Research Center, U.S.A.
2University of Waikato, New Zealand

Introduction

• A template model that usesMT-like input elements can
mimic human heading estimation under many conditions

(Pert'one,1992;Perroneand Stone,1994).

• The goal of this study is 1o compare the output elements

of this mode (head ng detectors) with MST neurons.

O Background

A. The problem

:'-:'.":2"-\

"/ i x

• Estimate direction of self-translation or heading (g) from a

combinod?translatlon/rotalion induced flow-fleld.

B. The template model

=t=.

• Oulpals of MT-like input sensors are combined by detectors.
• Maps of such detectors are used to estimate heading.

C. Heeding detector

• Multiple MT-like _nsors are fed in from each location in the
_;¢,,_1r,.td

• Each detector is a template for a spocific flow-field produced

by conlblncd translati(m/rutation sclf-lnotion.

• Rotation is assumed to result from gaze stabilization.

O Position Invarlance
(Ouffy & Wurh,, 1991)

PositionInvariance
(Grazlano et al., 1994)

A. Radial Motion

MST MODEL

i I..... , L

B. Roll Motion

MST MODEL

invarianea in Graziano paradigm.

B. Roll Motion

MST MODEL
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fiolh MST neurons and model heading detectors show spiral

invariance.

TemplateversusDecomposition
(Orban et aL, 1992)

i-
Z e _ ...... • , ,_;

Ratio non-preferred/preferred flow

• Both MST neurons and model heading detectors act like

templates rather than performing a decomposition of the
flow-field.

Conclusions

• Our model heading detectors:
- act like templat_ for specific instances of combined

translation/rotation.

- show the emergent properties of position and spiral
invariance.

• Therefore neither position nor spiral invarianceare

incompatible with heading estimation.

• MST neurons:

- act like template.,;.
- show position and spiral invaHance.
- are therefore well-suited to support heading estimation.

References:

Duffyand Wurtz (1991) J. Nearophysiol., 65: 13294345.

Duffy and Wonz (1991) J. Nanrophysiol. 65: 1346-1359.

Graz.lano et al. (I 994) J. Neurosci. 14: 54-67.

Orban et al. (1992) PNAS 89: 2595-2599.

Permne (1992) JOSA A 9:177-194.

Permne and Stone (1994) Vision Re.arch. 34: 2917-2938.
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SIMULATING THE SPEED AND DIRECTION TUNING OF MT NEURONS
USING SPATIOTEMPORAL TUNED V I-NEURON INPUTS.

((J. A. Perrone)) Psychology Dept., University of Waikato, New Zealand and
NASA Ames Res.Ctr., Moffett Field, CA.

Purpose. Neurons in the primate middle temporal cortical area (NIT) show
characteristic speed and direction tuning useful for the cxtraction of self-motion and

depth information from 2-D image motion (Perrone, JOSA 1992; Perrone & Stone,
ECVP 1992). Neurons at the preceeding cortical level (V l) are tuned for particular

spatiotemporal frequencies and can be modelled using linear filters (Watson &
Ahumada, NASA TM 1983). However such filters are not velocity selective since

their outputs are affected by factors such as the spatial frequency of the stimulus.
Independence from such 'extraneous' stimulus features is desirable if the neuronal

output is to be used for self-motion and depth extraction. Method. In order to
construct a sensor, wc combined the motion-energy outputs (Adelson & Bergen,

JOSA 1985) from sets of linear spatiotemporal filters using a range of spatial

frequencies but only two temporal-frequency channels (sustained and transient) as
suggested by human psychophysics (Kulikowski & Tolhurst, J.Physiol. 1973). To

set up a particular speed preference for the sensor as a whole, we adjusted the output
ratio of the two temporal channels within each spatial-frequency band. Thus we were
able to tune each band individually to the appropriate temporal frequency. _'
The sensor was tested with moving bars using a range of speeds and directions. The

direction and speed tuning matched that of an "average" MT neuron. Using moving

sine-wave grating inputs, we confirmed that the speed and direction tuning of the
sensors is largely independent of the input spatial frequency. _:9.._l.t!fik_. Motion"

energy responses like those of directionaily-selective V1 complex cells can be
combined to create direction- and speed-tuned responses similar to those of MT

neurons.
None-

Supported by NASA RTOP #199-12-06-12-24 and NASA NCC2-307.



GENERATING ACCELERATION SENSITIVE MOTION SENSORS FROM SETS

OF SPATIO-TEMPORAL FILTERS ((J. A. Perronel)) Psychology Dept., University

of Waikato, New Zealand 1

Purpose. Forward translation through the environment produces retinal image motion
that often exhibits a large acceleration component. Acceleration information is useful
for self-motion estimation and for the control of eye-movements (e.g., Pursuit.
Krauzlis & Lisberger, Science, 1991). However such acceleration involves a
continuous increase in the temporal frequency of the target and hence cannot be readily
analyzed using simple spatio-temporal filters. We investigated methods for processing
acceleration while still retaining the basic spatio-temporal filter architecture. Methods.
Only two temporal-frequency channels (sustained = S and transient = T) are used.
Adjusting the gain of the S channel alters the tf at which the two channel outputs are
equal (see black dot in fig. 1). Subtraction of the log-transformed outputs of the T & S

(1)

g,
J

,_ (2)
%

10 100 "- 1 10 100

Temporal Frequency (Hz)

channels (plus inversion) produces
an output tightly tuned to this tf (see
A in fig.2). Thus speed tuning can
be achieved by manipulating the
gain of the S channel (Perrone,
ARVO 1994). In order to construct
a sensor tuned for acceleration

(increasing tf) the gain of the S
channel is altered to move S up to
S'. This enables the increasing tf

to be tracked (A to B), at least up to about 8 Hz. Summation of the outputs as the
speed tuning moves from A to B will produce a large total 'acceleration' output if the
target acceleration matches the rate specified by the A to B shift. Results. A wide
range of speed and acceleration tunings were possible by applying the above
mechanism across a small set of spatial frequency channels (4). Conclusion. Two
broadly tuned temporal filters (supported by human psychophysics) are adequate for
acceleration detection.

1. Supported by NASA grant NAGW-4127 None



APPENDIX 1: Abstract of paper submitted to Journal of Neuroscience.

EMULATING THE VISUAL RECEPTIVE FIELD PROPERTIES OF MST

NEURONS WITH A TEMPLATE MODEL OF HEADING ESTIMATION

John A. Perronel,and Leland S. Stone 2

1Department of Psychology

University of Waikato,
Hamilton, New Zealand

2Flight Management and Human Factors Division
NASA Ames Research Center

Moffett Field, CA, USA

ABSTRACT

We have previously proposed a computational neural-network model by

which the complex patterns of retinal image motion generated during

locomotion (optic flow) can be processed by specialized detectors acting as

templates for specific instances of self-motion. The detectors in this template

model respond to global optic flow by sampling image motion over a large

portion of the visual field through networks of local motion sensors with

properties similar to neurons found in the middle temporal (MT) area of

primate extrastriate visual cortex. The model detectors were designed to
extract self-translation (heading), self-rotation, as well as the scene layout

(relative distances) ahead of a moving observer and are arranged in cortical-

like heading maps to perform this function. Heading estimation from optic

flow has been postulated by some to be implemented within the medial

superior temporal (MST) area. Others have questioned whether MST neurons
can fulfill this role because some of the receptive field properties appear

inconsistent with those required for self-motion estimation. To resolve this

issue, we systematically compared single-unit responses in MST with the

outputs of model detectors under matched stimulus conditions. We found
that most of the basic physiological properties of MST neurons can be

explained by the template model. We conclude that MST neurons are well

suited to support heading estimation and that the template model provides

an explicit set of testable hypotheses which can guide future exploration of

MST and adjacent areas within the primate superior temporal sulcus.
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APPENDIX 2 (Manuscript of paper to be submitted to Nature).

PRECISE VISUAL SPEED ESTIMATION FROM BROADLY

TUNED MOTION FILTERS.

John A. Perrone

Department of Psychology

The University of Waikato

Hamilton, New Zealand

Correspondence to:

Dr. J. A. Perrone

Department of Psychology

The University of Waikato

Private Bag 3105

Hamilton

New Zealand

e-mail: jpnz@ waikato.ac.nz

Fax: 64 7 856 2158

4



Locomotion through the environment generates a pattern of image motion on

the retina of our eyes 1. The speed of the motion at a particular point on the

retina is determined by a number of factors, such as our own speed, the retinal

location of the motion, and the distance of the imaged object in the world 2, 3.

Since most environments contain objects at a range of distances and because our

visual field is large, the motion over the retina exhibits a great variety of speeds.

This variation provides a rich source of information concerning the layout of the

scene ahead if small speed differences can be detected over a wide range 2, 3.

Humans possess such a speed discrimination ability 4 and neurones in the Middle

Temporal (MT or V5) 5 area of primate visual cortex exhibit narrow speed

tuning over a broad range of preferred speeds (1% - 512°/s) 6. How this speed

processing ability comes about is a long standing puzzle because the motion

sensitive neurones found in the region prior to MT on the cortical visual

pathway (area V1) are not speed tuned. I suggest a method by which this

refinement in speed estimation between areas V1 and MT is achieved and

demonstrate how the visual system is able to generate a wide range of speed

tunings with very limited resources.

The consensus that has emerged after a number of theoretical, 7, 8 psychophysical, 9

and physiological studies 10,11 is that visual motion is processed in area V 1 of visual

cortex by sets of spatio-temporal tuned neurones. These neurones respond maximally

to particular combinations of spatial and temporal frequencies. Some of these V1

neurones (transient) are directionally selective for motion and have a biphasic

temporal impulse response with band-pass temporal tuning 12, 13 (Fig. la). Others

(sustained) respond best to static features and are not directionally selective. These

sustained neurones have a monophasic impulse response and low-pass temporal

tuning12,13 (Fig. lb). Squaring of the outputs from appropriate pairs of these two

types of motion filters produces a measure of the spatio-temporal 'energy' 14, 15 at a

particular retinal location. The amplitude response functions shown in Fig. lb reflect

the amount of energy generated for each temporal frequency.

Fig. 1 about here.

Both static and moving images are analysed by sets of filters of different spatial scales

16, 17 Each retinal location is represented by a number of different sized sustained

and transient spatio-temporal filters (Fig. 2a). In the spatio-temporal frequency

domain, an edge moving at speed v has a spectrum that lies along a line of slope = -v.

7, 8 (Fig. 2a).
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Fig. 2 abouthere

Motion of anedgeat speedv deg/secgeneratesatemporalfrequencyequalto vu Hz

in a spatialfilter tunedto u cycles/deg.Within aparticularspatialchannel,changesto
thespeed(andhencethetemporalfrequency)will changetheoutputof thetransient
filter in accordancewith thetemporaltuning functionshownin Fig. lb. Howeverthis
temporaltuning is verybroadcomparedto thespeedtuningfound in MT neurones6
(seeaheadto fig. 3b),andtheoutputcanbecontaminatedby changesto the spatial
frequencyand/orcontrastof the input. An additional limitation of the spatio-temporal

energy filters is that the set of possible preferred speed tunings is constrained by the

small number of transient filters.

An ideal motion sensor tuned to speed v, must respond only to the spatial and

temporal frequencies located along the line with slope = v. A single, transient spatio-

temporal filter cannot meet this requirement on its own and information from a

number of filters must be combined. This approach was used in an earlier model of

image velocity estimation 18 but the filters did not have physiologically plausible

temporal responses and differed somewhat from those shown in Fig. lb. The popular

gradient model of speed estimation 19, 20 also uses information from several filter

types and incorporates division of transient channel outputs by sustained channel

outputs. However, an important difference between the model to be described here

and the gradient models is that the new motion filter generates an output that is speed

tuned, not one that is linearly related to speed. Speed tuning is a well established

property of MT neurones 6 whereas neurones that generate an output proportional to

speed have never been found. Furthermore, mere speed tuning is perfectly adequate

for the construction of template networks designed to model higher levels of motion

processing such as the extraction of observer self-motion 21

The solution I have developed to the speed tuning problem relies on a special

combination rule for the sustained and transient filter energy outputs. An intuition

for this process can be gained by noting that the two temporal tuning curves in Fig. lb

cross at one particular temporal frequency (see arrow). This is the point at which the

outputs of the two filters in a particular spatial channel are equal. Consider a

mechanism that produces a large output whenever the difference between the

sustained and temporal filter outputs is zero (e.g., though a disinhibitory mechanism).

For the temporal frequency corresponding to the position of the arrow in Fig. lb, the

output would be high. For temporal frequencies on either side, the absolute

difference is not zero and the response would be less.
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This featurebecomessignificantonceit is realisedthatthe 'cross-over' point can be

manipulated by changing the gain of the sustained spatio-temporal filters. Note, for

example, that a downward shift of the sustained curve in Fig. lb results in the cross-

over point occurring at a lower specific temporal frequency. By using this gain

mechanism, each spatial channel can be selectively 'tuned' to a particular temporal

frequency (speed). In order to ensure that the maximum response occurs at the cross-

over point we add a stage which sums the outputs from the transient and sustained

filters. The mechanism for exploiting the cross-over point in each spatial channel can

be formalised using the following equation that gives the filter output for a spatial

channel, n:

Fn_

LogT n + Log(S n x Gn)

LogT n- Log(Snx Gn) + 8 (1)

where T and S are the transient and sustained filter outputs and G is the gain used to

weight the sustained filter output. For economy, the equation is intended to represent

the functional aspects of the mechanism and not the underlying physiological

implementation. The energy outputs of the transient and sustained filters are first

passed through a compressive non-linearity (log) to compress their output range and

to increase the sensitivity to low input contrast levels. The sustained filter outputs

are weighted by the gain term (G) in order to set the cross-over point to the

appropriate temporal frequency for the spatial channel, n. The sum of the two log-

transformed and weighted outputs (logT and log(S x G)) is divided by a term which

reaches a minimum when the transient and weighted sustained outputs are equal. The

5 term prevents division by zero and sets the speed tuning bandwidth (full width at

half-height) of the filter. Such an equation could effectively be implemented

biologically via a disinhibition mechanism yielding true narrowly-tuned speed tuning

within a single spatial channel as opposed to proportional speed outputs in spatial

channels 22

While moving us a step closer to the ideal filter, the mechanism outlined above only

deals with the vertical temporal frequency axis. Because the spectrum of a moving

edge is oriented relative to the horizontal spatial frequency axis (see Fig. 2a), the filter

must be oriented in spatio-temporal frequency space. This orientation can be

achieved by the judicious choice of the spatio-temporal filter properties.

I discovered that if two basic conditions exist in each spatial channel, then the

application of the model described in Eq. 1 will produce the required oriented filter.
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The first condition is that the peak spatial frequency of the transient filter within a

linked pair be shifted slightly towards lower frequencies (-2.5%) relative to the

sustained filter. The second condition is that the spatial bandwidth of the transient

filter be slightly larger (-2%) than the bandwidth of the sustained filter. When these

two conditions exist and the gain term for the channel is adjusted appropriately, a

filter results that is close to our ideal and suited to the line spectrum generated by

moving edges in the scene (Fig. 2b).

Figure 2b shows the situation in which all the spatial channels are tuned to the same

speed (-4°/sec). Other configurations are possible but this arrangement will be used

to demonstrate the new motion sensor. A combination rule is required if the

information from all of the spatial channels is to be used to give an overall speed

estimate. This is a general problem in image analysis and not specific to motion

estimation 23. I have adopted a scheme in which the maximum output across the four

spatial channels (Max[Fn], n = 1,4) is used as the final output of the combined motion

sensor. Allowance must be made for the different sizes of the spatial filters in each

channel and their different spatial sampling rates. In the simulations that follow, only

the outputs from filters centred on one spatial location are considered. Solutions for

the more general case of two-dimensional distributions of filters have been developed

and will be presented in a future publication.

Figure 3 about here

With the mechanism outlined in the new model, a wide range of speed tunings can be

achieved by simply changing the gain term within each spatial channel. Each channel

can be tuned to any temporal frequency in the range from 0 to about 8 Hz. Within

these upper and lower bounds, a huge variety of speed tunings can be set up using the

same minimal channel architecture. The speed tuning for a number of model sensors

tuned to a range of image speeds is shown in Fig. 3 along with reproduced data from

MT neurones 6. The model sensors exhibit the same peaked tuning functions seen in

the physiological data, with their response falling to approximately 50% with a

doubling or halving of the preferred speed of the sensor. The use of sampled digital

imagery prevented the very highest speed tuning (256°/s) being simulated. Other than

this minor limitation, the model is able to reproduce the speed tuning patterns found

in MT neurone responses using well documented properties of neurones found in area

V 1 of primary visual cortex. It therefore offers an explanation of how the V 1-MT

speed tuning transformation occurs.
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Therealreadyexistsindirect evidencefor theweightingmechanismproposedin the
model. In orderto tuneeachspatialchannelto the samespeedv, theequal-output
cross-overpointsfor thetransientandsustainedfilter outputsneedto occurat a low
temporal frequencyin low spatialfrequencychannelsandat ahigh temporal
frequencyin high spatialfrequencychannels.For this to occur, thesustainedfilter
outputsmustbe reducedby a largeamountin the low spatialfrequencychannelsand
increasedin thehigh spatialfrequencychannels.If suchaweightingpatternexisted
wewould expectto find thatthetransientfilters dominateatlow spatialfrequencies
andthe sustainedfilters dominateat high spatialfrequencies.Onewouldalsopredect

a systematicchangein therelativesensitivitiesof thetransientandsustainedfilters as
their preferredspatialfrequencychanges.Theseresultshaveoftenbeenfound in a
variety of psychophysicalexperiments.24,25

I havedemonstratedthat despitewhatat first appearsto beminimal andinadequate
resourcesin areaV1 (just twobroadly tunedtemporalchannelsanda limited number
of spatialchannels), it is possibleto deriveprecisespeedtuning overawide rangeof
preferredspeeds. Theproposedmechanismcouldform thebasisof ageneralprocess
by which biological systemsobtainvery fine perceptualdiscriminationsfrom the
broadly tunedfilters commonto manyof the senses.
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Figure Captions.

Figure. 1.
(a) Temporal impulseresponsesof thetransientandsustainedspatio-temporalfilters
usedin themodel. The temporalimpulseresponseextendsovera 160msecperiod.
The sustainedfunction is monophasicandfavoursintegrationof staticfeatures.The

transientfunction is diphasic,respondingbestto temporallymodulating(moving)
stimuli. (b) Amplitude responsefunctionsusedto modelthetemporalfrequency
tuning of thetransientandsustainedspatio-temporalfilters. They arebasedon
equationsderivedto fit humanpsychophysicaltemporalsensitivity data26. The

arrow indicates the temporal frequency at which the output of the two filter types is

equal.

Figure 2.

(a) Frequency domain representation of the spatio-temporal filters used to generate

the speed tuned motion filter. Only the upper right quadrant of frequency space is

depicted. Four spatial channels are used although the exact number is not critical to

the discussion. A vertical slice through one of the spatial channels would reveal the

profiles depicted in the amplitude response curves of Fig. 1 (b). The model spatio-

temporal filters are constructed using the design of Watson & Ahumada. 8, 27 The

transient channels were set to 4, 8, 16, and 32 cycles/width (width = 32 ° = 256 pixels

in model simulations). An edge moving from right to left at a particular speed -v,

generates a spectrum of slope = v. The aim is to construct a filter that responds

selectively to only one slope. Image motion in directions other than 180 ° has the

effect of moving the spectrum in a plane passing through the line shown in Fig. lb,

and is easily dealt with by the inclusion of spatio-temporal filters tuned to different

orientations.

b) New speed tuned filter tuned to -4°/sec. The sustained spatial filter bandwidths

were first set to 1 octave and the transient centre spatial frequencies set as specified in

a). The gain term (Gn) and filter parameters required in each channel were then

determined from the amplitude response functions of the spatial and temporal

channels using a search algorithm which minimised the 'spread' of the filter output

around a line of slope = 4.0. The log- frequency bandwidth of the transient filters was

1.02 octaves and the sustained centre spatial frequencies were a factor of 1.025 higher

than those of the transient filters. The delta term in Eq. 1 determines the speed tuning

bandwidth of the filter and it was set to 0.4. In this example, the different spatial

channels are all tuned to the same speed and the maximum output across the 4
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channelswasusedasthetotal sensoroutput. This type of sensoris largely

independentof thespatialfrequencycontentof themovingimage.

Figure3.
a) Speedtuningresultsfrom asimulationusingdigital imagesequences(256pixels
wide x 8 frames). It wasassumedthat 256pixelsmaponto32degreesof visual field
andthatthe frameswere sampledat a64Hzrate. Thus l°/s wasequivalentto 0.125
pixel/frame. Digital implementationof the sensorrequiresa sampledversionof the
temporalfilters which introducessomeerrors. For this reason,thegainswereset
empirically by determiningthesustained/transientoutputratios for arangeof edge
speeds.Model sensorstunedto 4°/s(opensquares),16°/s(filled circles),64°/s (open
triangles)and128°/s(opencircles)weretestedusingedgespeedsrangingfrom 1°/s
to 256°/sin octavesteps. Speedshigherthan256°/scouldnotbe testedbecauseof
the imagesizelimits. Themodelfilters were alwayslocatedatthe midpointof the
edge'stravel andthe maximumoutputacrossthefour spatialchannelswasusedasthe
final outputof thesensor.Theoutputsfor eachsensorwerenormalisedwith respect
to thepeaktuning responseandthesevaluesareplottedin thegraph.

b) Reproduceddatafrom Maunsell& VanEssen6who testedthespeedtuning of
neuronesin areaMT of primatevisualcortexoverawide rangeof stimulusspeeds.
They found neuroneswith preferredspeedtuningscoveringa broadrange,but the
majority of thecells in their sampleweretunedto approximately32°/s. The
responseshavebeennormalisedto themaximumoutputfor thecell. Theopencircles
anddashedlinesrepresentresponsesthatwerebelowthe spontaneousfiring ratefor
thecell.
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Fig. 1
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